29 research outputs found

    Structural reliability prediction of a steel bridge element using dynamic object oriented Bayesian Network (DOOBN)

    Get PDF
    Different from conventional methods for structural reliability evaluation, such as, first/second-order reliability methods (FORM/SORM) or Monte Carlo simulation based on corresponding limit state functions, a novel approach based on dynamic objective oriented Bayesian network (DOOBN) for prediction of structural reliability of a steel bridge element has been proposed in this paper. The DOOBN approach can effectively model the deterioration processes of a steel bridge element and predict their structural reliability over time. This approach is also able to achieve Bayesian updating with observed information from measurements, monitoring and visual inspection. Moreover, the computational capacity embedded in the approach can be used to facilitate integrated management and maintenance optimization in a bridge system. A steel bridge girder is used to validate the proposed approach. The predicted results are compared with those evaluated by FORM method

    Association of age and night flight duration with sleep disorders among Chinese airline pilots

    Get PDF
    ObjectiveNight flights might aggravate sleep disorders among aging airline pilots, posing a threat to flight safety. In this study, we assess the prevalence of sleep disorders as well as the combined effects of night flight duration and aging on sleep disorders.MethodA cross-sectional study was conducted between July and December, 2021. Participants were recruited from a commercial airline. Sleep disorders were evaluated using the Pittsburgh Sleep Quality Index (PSQI). The interaction effect of night flight duration and age on sleep disorders and their correlates were examined using logistic regression models.ResultsIn total, 1,208 male airline pilots were included in the study, with a median age of 34 (interquartile range [IQR]: 29–39) years. The overall prevalence of sleep disorders was 42.6%. The multivariate logistic regression identified an interaction between night flight duration and age on sleep disorders (adjusted odds ratio [aOR] of the interaction term was 5.85 95% CI: 2.23–15.34 for age ≥ 45 years; 1.96 95% CI:1.01–3.81 for the age group 30–44 years). Longer night flight duration (aOR: 4.55; 95%CI: 1.82–11.38) and body mass index (BMI) ≥28.0 kg/m2 (aOR: 0.16; 95% CI: 0.03–0.91) were significantly associated with sleep disorders in participants aged ≥45 years. Hyperuricemia (aOR: 1.54; 95% CI: 1.09–2.16) and regular exercise (aOR: 0.23; 95% CI: 0.08–0.70) were significantly associated with sleep disorders in the 30–44 years age group.ConclusionThe mean monthly night flight duration and aging had a synergistic effect on airline pilots’ sleep disorders, implying an aging and work-related mechanistic pathogenesis of sleep disorders in airline pilots that requires additional exploration and intervention

    Integrated health prediction of bridge systems using dynamic object oriented Bayesian networks (DOOBNS)

    Get PDF
    The serviceability and safety of bridges are crucial to people’s daily lives and to the national economy. Every effort should be taken to make sure that bridges function safely and properly as any damage or fault during the service life can lead to transport paralysis, catastrophic loss of property or even casualties. Nonetheless, aggressive environmental conditions, ever-increasing and changing traffic loads and aging can all contribute to bridge deterioration. With often constrained budget, it is of significance to identify bridges and bridge elements that should be given higher priority for maintenance, rehabilitation or replacement, and to select optimal strategy. Bridge health prediction is an essential underpinning science to bridge maintenance optimization, since the effectiveness of optimal maintenance decision is largely dependent on the forecasting accuracy of bridge health performance. The current approaches for bridge health prediction can be categorised into two groups: condition ratings based and structural reliability based. A comprehensive literature review has revealed the following limitations of the current modelling approaches: (1) it is not evident in literature to date that any integrated approaches exist for modelling both serviceability and safety aspects so that both performance criteria can be evaluated coherently; (2) complex system modelling approaches have not been successfully applied to bridge deterioration modelling though a bridge is a complex system composed of many inter-related bridge elements; (3) multiple bridge deterioration factors, such as deterioration dependencies among different bridge elements, observed information, maintenance actions and environmental effects have not been considered jointly; (4) the existing approaches are lacking in Bayesian updating ability to incorporate a variety of event information; (5) the assumption of series and/or parallel relationship for bridge level reliability is always held in all structural reliability estimation of bridge systems. To address the deficiencies listed above, this research proposes three novel models based on the Dynamic Object Oriented Bayesian Networks (DOOBNs) approach. Model I aims to address bridge deterioration in serviceability using condition ratings as the health index. The bridge deterioration is represented in a hierarchical relationship, in accordance with the physical structure, so that the contribution of each bridge element to bridge deterioration can be tracked. A discrete-time Markov process is employed to model deterioration of bridge elements over time. In Model II, bridge deterioration in terms of safety is addressed. The structural reliability of bridge systems is estimated from bridge elements to the entire bridge. By means of conditional probability tables (CPTs), not only series-parallel relationship but also complex probabilistic relationship in bridge systems can be effectively modelled. The structural reliability of each bridge element is evaluated from its limit state functions, considering the probability distributions of resistance and applied load. Both Models I and II are designed in three steps: modelling consideration, DOOBN development and parameters estimation. Model III integrates Models I and II to address bridge health performance in both serviceability and safety aspects jointly. The modelling of bridge ratings is modified so that every basic modelling unit denotes one physical bridge element. According to the specific materials used, the integration of condition ratings and structural reliability is implemented through critical failure modes. Three case studies have been conducted to validate the proposed models, respectively. Carefully selected data and knowledge from bridge experts, the National Bridge Inventory (NBI) and existing literature were utilised for model validation. In addition, event information was generated using simulation to demonstrate the Bayesian updating ability of the proposed models. The prediction results of condition ratings and structural reliability were presented and interpreted for basic bridge elements and the whole bridge system. The results obtained from Model II were compared with the ones obtained from traditional structural reliability methods. Overall, the prediction results demonstrate the feasibility of the proposed modelling approach for bridge health prediction and underpin the assertion that the three models can be used separately or integrated and are more effective than the current bridge deterioration modelling approaches. The primary contribution of this work is to enhance the knowledge in the field of bridge health prediction, where more comprehensive health performance in both serviceability and safety aspects are addressed jointly. The proposed models, characterised by probabilistic representation of bridge deterioration in hierarchical ways, demonstrated the effectiveness and pledge of DOOBNs approach to bridge health management. Additionally, the proposed models have significant potential for bridge maintenance optimization. Working together with advanced monitoring and inspection techniques, and a comprehensive bridge inventory, the proposed models can be used by bridge practitioners to achieve increased serviceability and safety as well as maintenance cost effectiveness

    Condition deterioration prediction of bridge elements using Dynamic Bayesian Networks (DBNs)

    Get PDF
    The ability of bridge deterioration models to predict future condition provides significant advantages in improving the effectiveness of maintenance decisions. This paper proposes a novel model using Dynamic Bayesian Networks (DBNs) for predicting the condition of bridge elements. The proposed model improves prediction results by being able to handle, deterioration dependencies among different bridge elements, the lack of full inspection histories, and joint considerations of both maintenance actions and environmental effects. With Bayesian updating capability, different types of data and information can be utilised as inputs. Expert knowledge can be used to deal with insufficient data as a starting point. The proposed model established a flexible basis for bridge systems deterioration modelling so that other models and Bayesian approaches can be further developed in one platform. A steel bridge main girder was chosen to validate the proposed model

    Preliminary study on bridge health prediction using Dynamic Objective Oriented Bayesian Network (DOOBN)

    Get PDF
    The availability of bridges is crucial to people’s daily life and national economy. Bridge health prediction plays an important role in bridge management because maintenance optimization is implemented based on prediction results of bridge deterioration. Conventional bridge deterioration models can be categorised into two groups, namely condition states models and structural reliability models. Optimal maintenance strategy should be carried out based on both condition states and structural reliability of a bridge. However, none of existing deterioration models considers both condition states and structural reliability. This study thus proposes a Dynamic Objective Oriented Bayesian Network (DOOBN) based method to overcome the limitations of the existing methods. This methodology has the ability to act upon as a flexible unifying tool, which can integrate a variety of approaches and information for better bridge deterioration prediction. Two demonstrative case studies are conducted to preliminarily justify the feasibility of the methodolog

    Predicting maintenance requirements for school assets in Queensland

    No full text
    In this paper, a maintenance prediction model is developed for school building assets using a large data set provided by the Queensland Department of Education and Training (DET). DET data on the asset condition, historical maintenance expenditure, and asset characteristics, was analyzed to evaluate which characteristics affect the maintenance needs of the school assets. The condition of the assets was quantified using data on the estimated maintenance backlog. Using statistical methods, models for key building element groups were constructed and the statistical significance of each factor was evaluated. It was found that the school region, the gross floor area, and the maintenance expenditure significantly affected the degradation of key building element groups

    Synchronization of two non-identical coupled exciters in a non-resonant vibrating system of linear motion. Part I: Theoretical analysis. Shock and Vibration

    No full text
    Abstract. In this paper an analytical approach is proposed to study the feature of frequency capture of two non-identical coupled exciters in a non-resonant vibrating system. The electromagnetic torque of an induction motor in the quasi-steady-state operation is derived. With the introduction of two perturbation small parameters to average angular velocity of two exciters and their phase difference, we deduce the Equation of Frequency Capture by averaging two motion equations of two exciters over their average period. It converts the synchronization problem of two exciters into that of existence and stability of zero solution for the Equation of Frequency Capture. The conditions of implementing frequency capture and that of stabilizing synchronous operation of two motors have been derived. The concept of torque of frequency capture is proposed to physically explain the peculiarity of self-synchronization of the two exciters. An interesting conclusion is reached that the moments of inertia of the two exciters in the Equation of Frequency Capture reduce and there is a coupling moment of inertia between the two exciters. The reduction of moments of inertia and the coupling moment of inertia have an effect on the stability of synchronous operation

    A Learning Convolutional Neural Network Approach for Network Robustness Prediction

    Full text link
    Network robustness is critical for various societal and industrial networks again malicious attacks. In particular, connectivity robustness and controllability robustness reflect how well a networked system can maintain its connectedness and controllability against destructive attacks, which can be quantified by a sequence of values that record the remaining connectivity and controllability of the network after a sequence of node- or edge-removal attacks. Traditionally, robustness is determined by attack simulations, which are computationally very time-consuming or even practically infeasible. In this paper, an improved method for network robustness prediction is developed based on learning feature representation using convolutional neural network (LFR-CNN). In this scheme, higher-dimensional network data are compressed to lower-dimensional representations, and then passed to a CNN to perform robustness prediction. Extensive experimental studies on both synthetic and real-world networks, both directed and undirected, demonstrate that 1) the proposed LFR-CNN performs better than other two state-of-the-art prediction methods, with significantly lower prediction errors; 2) LFR-CNN is insensitive to the variation of the network size, which significantly extends its applicability; 3) although LFR-CNN needs more time to perform feature learning, it can achieve accurate prediction faster than attack simulations; 4) LFR-CNN not only can accurately predict network robustness, but also provides a good indicator for connectivity robustness, better than the classical spectral measures.Comment: 12 pages, 10 figure

    Optimising maintenance staffing for a CSP plant

    No full text
    Introduction- Staffing levels strongly influence economics of CSP plants•NREL SAM spreadsheets: ~10 staff each for solar field and power block (supervisor, foreman, techs) - Salaries ∼100 kUSDper year (burdened labour cost, based on CA labour costs)- Similar in in Australia?- Basic trade-off: More staff →higher availability of CSP systems and more revenue, but larger direct labour costs- Purpose of this study: propose methodologies to calculate appropriate staffing - Examples on Solar Field and Power Block –how much can be saved
    corecore